Accéder au contenu
Merck
  • Quercetin-loaded poly (lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer.

Quercetin-loaded poly (lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer.

Drug delivery (2016-04-14)
Xin Guan, Meng Gao, Hong Xu, Chenghong Zhang, Hongyan Liu, Li Lv, Sa Deng, Dongyan Gao, Yan Tian
RÉSUMÉ

Utilization of quercetin (QT) in clinics is limited by its instability and poor solubility. To overcome these disadvantages, we prepared QT as QT-loaded PLGA-TPGS nanoparticles (QPTN) and examined its properties and therapeutic efficacy for liver cancer. QT-loaded PLGA nanoparticles (QPN) and QT/coumarin-6-loaded PLGA-TPGS nanoparticles (QCPTN) with coumarin-6 as a fluorescent marker were also prepared to investigate the cellular uptake by HepG2 and HCa-F cells using a confocal laser scanning microscope (CLSM), and their effects on apoptosis of HepG2 cells were assessed with flow cytometry. The results measured using transmission electron microscopy, scanning electron microscopy and size analyses indicated that QPTN were stably dispersed sphere with diameter in the range of 100-200 nm. It indicated that the QT loading and encapsulation efficiency in QPTN reached 21.63% and 93.74%, respectively, and the accumulative drug release of QPTN was 85.8%, the QCPTN uptake in HCa-F and HepG2 cells were 50.87% and 61.09% using HPLC analysis, respectively. The results determined using an Annexin-PI flow cytometry indicated that QPTN could induce HepG2 cell apoptosis in a dose dependent manner. The results of histological examination and HPLC analysis confirmed that QPTN was targeted to liver cells. In vivo analysis using solid tumor-bearing mouse model indicated that QPTN could suppress tumor growth by 59.07%. Moreover, all the studied properties of QPTN were more desirable than those of QT-loaded PLGA nanoparticles (QPN). In conclusion, QPTN could be used as a potential intravenous dosage form for the treatment of liver cancer owing to the enhanced pharmacological effects of QT with increased liver targeting.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Coumarin 6, ≥99%