Accéder au contenu
Merck

Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements.

Nature communications (2016-08-02)
Y Chen, H T Yi, X Wu, R Haroldson, Y N Gartstein, Y I Rodionov, K S Tikhonov, A Zakhidov, X-Y Zhu, V Podzorov
RÉSUMÉ

Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10(-11) to 10(-10) cm(3) s(-1)) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm(2) V(-1) s(-1)). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. We suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Methylammonium bromide
Référence
Conditionnement
Disponibilité
Prix
Quantité