Accéder au contenu
Merck

Chemoprevention with phytochemicals targeting inducible nitric oxide synthase.

Forum of nutrition (2009-04-16)
Akira Murakami
RÉSUMÉ

A regulated low level of nitric oxide (NO) production in the body is essential for maintaining homeostasis (neuroprotection, vasorelaxation, etc.), though certain pathophysiological conditions associated with inflammation involve de novo synthesis of inducible NO synthase (iNOS) in immune cells, including macrophages. A large body of evidence indicates that many inflammatory diseases, such as colitis and gastritis, as well as many types of cancer, occur through sustained and elevated activation of this particular enzyme. The biochemical process of iNOS protein expression is tightly regulated and complex, in which the endotoxin lipopolysaccharide selectively binds to toll-like receptor 4 and thereby activates its adaptor protein MyD88, which in turn targets downstream proteins such as IRAK and TRAF6. This leads to functional activation of key protein kinases, including IkB kinases and mitogen-activated protein kinases (MAPKs), such as p38 MAPK, JNK1/2, and ERK1/2, all of which are involved in activating key transcription factors, including nuclear factor-kappaB and activator protein-1. In addition, the production of proinflammatory cytokines such as interferon-gamma and interleukin-12 potentiates iNOS induction in autocrine fashions. Meanwhile, an LPS-stimulated p38 MAPK pathway plays a pivotal role in the stabilization of iNOS mRNA, which has the AU-rich element in its 3'-untranslated region, for rapid NO production. Thus, suppression and/or inhibition of the above-mentioned signaling molecules may have a great potential for the prevention and treatment of inflammation-associated carcinogenesis. In fact, there have been numerous reports of phytochemicals found capable of targeting NO production by unique mechanisms, including polyphenols, terpenoids, and others. This review article briefly highlights the molecular mechanisms underlying endotoxin-induced iNOS expression in macrophages, and also focuses on promising natural agents that may be useful for anti-inflammation and anticarcinogenesis strategies.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Auraptene, ≥98% (HPLC)