Accéder au contenu
Merck

Mechanistic differences in DNA nanoparticle formation in the presence of oligolysines and poly-L-lysine.

Biomacromolecules (2007-02-13)
Irina Nayvelt, Thresia Thomas, T J Thomas
RÉSUMÉ

We studied the effectiveness of trilysine (Lys3), tetralysine (Lys4), pentalysine (Lys5), and poly-l-lysine (PLL) (MW 50000) on lambda-DNA nanoparticle formation and characterized the size, shape, and stability of nanoparticles. Light scattering experiments showed EC50 (lysine concentration at 50% DNA compaction) values of approximately 0.0036, 2, and 20 micromol/L, respectively, for PLL, Lys5, and Lys4 at 10 mM [Na+]. Plots of log EC50 versus log [Na+] showed positive slopes of 1.09 and 1.7, respectively, for Lys4 and Lys5 and a negative slope of -0.1 for PLL. Hydrodynamic radii of oligolysine condensed particles increased (48-173 nm) with increasing [Na+], whereas no significant change occurred to nanoparticles formed with PLL. There was an increase in the size of nanoparticles formed with Lys5 at >40 degrees C, whereas no such change occurred with PLL. The DNA melting temperature increased with oligolysine concentration. These results indicate distinct differences in the mechanism(s) by which oligolysines and PLL provoke DNA condensation to nanoparticles.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Lys-Lys-Lys, ≥97% (TLC)
Sigma-Aldrich
Lys-Lys-Lys-Lys-Lys, ≥55% peptide basis
Sigma-Aldrich
Lys-Lys-Lys-Lys, ≥95% (TLC)