Accéder au contenu
Merck

Optical induction of autophagy via Transcription factor EB (TFEB) reduces pathological tau in neurons.

PloS one (2020-03-26)
Jessica L Binder, Praveen Chander, Vojo Deretic, Jason P Weick, Kiran Bhaskar
RÉSUMÉ

Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer's disease (AD) and related tauopathies. Several attempts have been made to promote clearance of pathological tau (p-Tau) from neurons. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden on cellular bioenergetics and can be deleterious. Here, we modified previously described two-plasmid systems of Light Activated Protein (LAP) from bacterial transcription factor-EL222 and Light Responsive Element (LRE) to encode TFEB. Upon blue-light (465 nm) illumination, the conformation changes in LAP induced LRE-driven expression of TFEB, its nuclear entry, TFEB-mediated expression of autophagy-lysosomal genes and clearance of p-Tau from neuronal cells and AD patient-derived human iPSC-neurons. Turning the blue-light off reversed the expression of TFEB-target genes and attenuated p-Tau clearance. Together, these results suggest that optically regulated TFEB expression unlocks the potential of opto-therapeutics to treat AD and other dementias.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-GAPDH Mouse mAb (6C5), liquid, clone 6C5, Calbiochem®
Sigma-Aldrich
Anticorps anti-Tau, clone Tau 12, clone Tau 12, from mouse