Accéder au contenu
Merck

WAVE2 is associated with poor prognosis in pancreatic cancers and promotes cell motility and invasiveness via binding to ACTN4.

Cancer medicine (2018-10-26)
Keisuke Taniuchi, Mutsuo Furihata, Seiji Naganuma, Toshiji Saibara
RÉSUMÉ

WAVE2 is a member of the WASP/WAVE family of actin cytoskeletal regulatory proteins; unfortunately, little is known about its function in pancreatic cancers. In this study, we report the role of WAVE2 in the motility and invasiveness of pancreatic cancer cells. High WAVE2 expression in human pancreatic cancer tissues was correlated with overall survival. WAVE2 accumulated in the cell protrusions of pancreatic cancer cell lines. Downregulation of WAVE2 by small interfering RNA decreased the cell protrusions and inhibited the motility and invasiveness of pancreatic cancer cells. WAVE2 promoted pancreatic cancer cell motility and invasion by forming a complex with the actin cytoskeletal protein alpha-actinin 4 (ACTN4). Downregulation of ACTN4 by small interfering RNA also inhibited the motility and invasiveness of the cells through a decrease in cell protrusions. Further investigation showed that WAVE2/ACTN4 signaling selectively stimulated p27 phosphorylation and thereby increased the motility and invasiveness of the cells. These results suggest that WAVE2 and ACTN4 stimulate p27 phosphorylation and provide evidence that WAVE2 promotes the motility and invasiveness of pancreatic cancer cells.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-Actin Antibody, clone JLA20, clone JLA20, from mouse