Skip to Content
Merck
  • Non-phosphorylated FTY720 induces apoptosis of human microglia by activating SREBP2.

Non-phosphorylated FTY720 induces apoptosis of human microglia by activating SREBP2.

Cellular and molecular neurobiology (2011-04-27)
Takashi Yoshino, Hiroko Tabunoki, Shigeo Sugiyama, Keitaro Ishii, Seung U Kim, Jun-Ichi Satoh
ABSTRACT

A synthetic analog of sphingosine named FTY720 (Fingolimod), phosphorylated by sphingosine kinase-2, interacts with sphingosine-1-phosphate (S1P) receptors expressed on various cells. FTY720 suppresses the disease activity of multiple sclerosis (MS) chiefly by inhibiting S1P-dependent egress of autoreactive T lymphocytes from secondary lymphoid organs, and possibly by exerting anti-inflammatory and neuroprotective effects directly on brain cells. However, at present, biological effects of FTY720 on human microglia are largely unknown. We studied FTY720-mediated apoptosis of a human microglia cell line HMO6. The exposure of HMO6 cells to non-phosphorylated FTY720 (FTY720-non-P) induced apoptosis in a dose-dependent manner with IC50 of 10.6 ± 2.0 μM, accompanied by the cleavage of caspase-7 and caspase-3 but not of caspase-9. The apoptosis was inhibited by Z-DQMD-FMK, a caspase-3 inhibitor, but not by Pertussis toxin, a Gi protein inhibitor, suramin, a S1P3/S1P5 inhibitor, or W123, a S1P1 competitive antagonist, although HMO6 expressed S1P1, S1P2, and S1P3. Furthermore, both phosphorylated FTY720 (FTY720-P) and SEW2871, S1P1 selective agonists, did not induce apoptosis of HMO6. Genome-wide gene expression profiling and molecular network analysis indicated activation of transcriptional regulation by sterol regulatory element-binding protein (SREBP) in FTY720-non-P-treated HMO6 cells. Western blot verified activation of SREBP2 in these cells, and apoptosis was enhanced by pretreatment with simvastatin, an activator of SREBP2, and by overexpression of the N-terminal fragment of SREBP2. These observations suggest that FTY720-non-P-induced apoptosis of HMO6 human microglia is independent of S1P receptor binding, and positively regulated by the SREBP2-dependent proapoptotic signaling pathway.