Skip to Content
Merck
  • Tyramine accumulation in rice cells caused a dwarf phenotype via reduced cell division.

Tyramine accumulation in rice cells caused a dwarf phenotype via reduced cell division.

Planta (2010-10-28)
Young Soon Kim, Sangkyu Park, Kiyoon Kang, Kyungjin Lee, Kyoungwhan Back
ABSTRACT

Transgenic rice plants overexpressing a rice tyrosine decarboxylase (TyDC) exhibited a dwarf phenotype with a high level of tyramine accumulation. The height of transgenic rice was reduced on average to 35% of the wild-type height, whereas the number of tillers increased to 190% that of wild type. When judged by cellular distribution of tyramine and tyramine derivatives, the level of tyramine in soluble and insoluble fractions was higher than that of tyramine derivatives such as 4-coumaroyltyramine (CT) in the transgenic rice plants, suggesting that tyramine rather than its derivatives was a causative compound triggering the dwarf phenotype. Microscopic observation revealed that cell size in the transgenic lines was maintained, with a slightly irregular arrangement in the leaf mesophyll cells. When wild-type rice seeds were grown in the presence of tyramine, rice seedlings also showed stunted phenotypes in a dose-dependent manner. When these stunted seedlings were employed to measure the degree of cellular proliferation by bromodeoxyuridine incorporation, only small numbers of cells were found to retain labeled nuclei in shoot tips compared with the untreated control. These results show that the dwarf phenotype associated with tyramine accumulation in transgenic rice plants is attributable to a reduction in cell number rather than cell size. In addition, our dwarf phenotype caused by tyramine was not closely associated with known dwarf genes such as D88.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Tyrosine Decarboxylase from Streptococcus faecalis, ≥0.1 unit/mg solid
Sigma-Aldrich
L-Tyrosine Decarboxylase Apoenzyme from Streptococcus faecalis, <0.005 unit/mg solid (without pyridoxal 5-phosphate), ≥0.05 unit/mg solid (with excess pyridoxal 5-phosphate)