Direkt zum Inhalt
Merck
  • Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs.

Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs.

Cell (2013-05-15)
Atish Mukherji, Ahmad Kobiita, Tao Ye, Pierre Chambon
ZUSAMMENFASSUNG

Alterations of symbiosis between microbiota and intestinal epithelial cells (IEC) are associated with intestinal and systemic pathologies. Interactions between bacterial products (MAMPs) and Toll-like receptors (TLRs) are known to be mandatory for IEC homeostasis, but how TLRs may time homeostatic functions with circadian changes is unknown. Our functional and molecular dissections of the IEC circadian clock demonstrate that its integrity is required for microbiota-IEC dialog. In IEC, the antiphasic expression of the RORα activator and RevErbα repressor clock output regulators generates a circadian rhythmic TLR expression that converts the temporally arrhythmic microbiota signaling into circadian rhythmic JNK and IKKβ activities, which prevents RevErbα activation by PPARα that would disrupt the circadian clock. Moreover, through activation of AP1 and NF-κB, these activities, together with RORα and RevErbα, enable timing homeostatic functions of numerous genes with IEC circadian events. Interestingly, microbiota signaling deficiencies induce a prediabetic syndrome due to ileal corticosterone overproduction consequent to clock disruption.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Corticosteron, ≥98.5% (HPLC)
Sigma-Aldrich
Corticosteron, ≥92%
Supelco
Corticosterone solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Supelco
Corticosteron, VETRANAL®, analytical standard