Direkt zum Inhalt
Merck
  • Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method.

Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method.

ACS nano (2012-07-10)
Meenakshisundaram Sankar, Qian He, Moataz Morad, James Pritchard, Simon J Freakley, Jennifer K Edwards, Stuart H Taylor, David J Morgan, Albert F Carley, David W Knight, Christopher J Kiely, Graham J Hutchings
ZUSAMMENFASSUNG

We report a convenient excess anion modification and post-reduction step to the impregnation method which permits the reproducible preparation of supported bimetallic AuPd nanoparticles having a tight particle size distribution comparable to that found for sol-immobilization materials but without the complication of ligands adsorbed on the particle surface. The advantageous features of the modified impregnation materials compared to those made by conventional impregnation include a smaller average particle size, an optimized random alloy composition, and improved compositional uniformity from particle-to-particle resulting in higher activity and stability compared to the catalysts prepared using both conventional impregnation and sol immobilization methods. Detailed STEM combined with EDX analyses of individual particles have revealed that an increase in anion concentration increases the gold content of individual particles in the resultant catalyst, thus providing a method to control/tune the composition of the nanoalloy particles. The improved activity and stability characteristics of these new catalysts are demonstrated using (i) the direct synthesis of hydrogen peroxide and (ii) the solvent-free aerobic oxidation of benzyl alcohol as case studies.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Benzylalkohol, ReagentPlus®, ≥99%
Sigma-Aldrich
Benzylalkohol, ACS reagent, ≥99.0%
Sigma-Aldrich
Benzylalkohol, puriss. p.a., ACS reagent, ≥99.0% (GC)
Sigma-Aldrich
Benzylalkohol, ≥99%, FCC, FG
Supelco
Benzylalkohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Benzylalkohol, anhydrous, 99.8%
Sigma-Aldrich
Benzylalkohol, natural, ≥98%, FG
Supelco
Benzylalkohol, analytical standard
Benzylalkohol, European Pharmacopoeia (EP) Reference Standard
Supelco
Benzylalkohol, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland