Direkt zum Inhalt
Merck
  • PF127 Hydrogel-Based Delivery of Exosomal CTNNB1 from Mesenchymal Stem Cells Induces Osteogenic Differentiation during the Repair of Alveolar Bone Defects.

PF127 Hydrogel-Based Delivery of Exosomal CTNNB1 from Mesenchymal Stem Cells Induces Osteogenic Differentiation during the Repair of Alveolar Bone Defects.

Nanomaterials (Basel, Switzerland) (2023-03-30)
Longlong He, Qin Zhou, Hengwei Zhang, Ningbo Zhao, Lifan Liao
ZUSAMMENFASSUNG

Pluronic F127 (PF127) hydrogel has been highlighted as a promising biomaterial for bone regeneration, but the specific molecular mechanism remains largely unknown. Herein, we addressed this issue in a temperature-responsive PF127 hydrogel loaded with bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (Exos) (PF127 hydrogel@BMSC-Exos) during alveolar bone regeneration. Genes enriched in BMSC-Exos and upregulated during the osteogenic differentiation of BMSCs and their downstream regulators were predicted by bioinformatics analyses. CTNNB1 was predicted to be the key gene of BMSC-Exos in the osteogenic differentiation of BMSCs, during which miR-146a-5p, IRAK1, and TRAF6 might be the downstream factors. Osteogenic differentiation was induced in BMSCs, in which ectopic expression of CTNNB1 was introduced and from which Exos were isolated. The CTNNB1-enriched PF127 hydrogel@BMSC-Exos were constructed and implanted into in vivo rat models of alveolar bone defects. In vitro experiment data showed that PF127 hydrogel@BMSC-Exos efficiently delivered CTNNB1 to BMSCs, which subsequently promoted the osteogenic differentiation of BMSCs, as evidenced by enhanced ALP staining intensity and activity, extracellular matrix mineralization (p < 0.05), and upregulated RUNX2 and OCN expression (p < 0.05). Functional experiments were conducted to examine the relationships among CTNNB1, microRNA (miR)-146a-5p, and IRAK1 and TRAF6. Mechanistically, CTNNB1 activated miR-146a-5p transcription to downregulate IRAK1 and TRAF6 (p < 0.05), which induced the osteogenic differentiation of BMSCs and facilitated alveolar bone regeneration in rats (increased new bone formation and elevated BV/TV ratio and BMD, all with p < 0.05). Collectively, CTNNB1-containing PF127 hydrogel@BMSC-Exos promote the osteogenic differentiation of BMSCs by regulating the miR-146a-5p/IRAK1/TRAF6 axis, thus inducing the repair of alveolar bone defects in rats.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-CD9-Antikörper, Klon MM2/57, clone MM2/57, Chemicon®, from mouse
Sigma-Aldrich
Anti-Osteocalcin-Antikörper, serum, from rabbit
Sigma-Aldrich
Monoclonal Anti-RUNX2 antibody produced in mouse, clone 4D5, purified immunoglobulin, buffered aqueous solution