Direkt zum Inhalt
Merck

Brain monoamine oxidase A inhibition in cigarette smokers.

Proceedings of the National Academy of Sciences of the United States of America (1996-11-26)
J S Fowler, N D Volkow, G J Wang, N Pappas, J Logan, C Shea, D Alexoff, R R MacGregor, D J Schlyer, I Zezulkova, A P Wolf
ZUSAMMENFASSUNG

Several studies have documented a strong association between smoking and depression. Because cigarette smoke has been reported to inhibit monoamine oxidase (MAO) A in vitro and in animals and because MAO A inhibitors are effective antidepressants, we tested the hypothesis that MAO A would be reduced in the brain of cigarette smokers. We compared brain MAO A in 15 nonsmokers and 16 current smokers with [11C]clorgyline and positron emission tomography (PET). Four of the nonsmokers were also treated with the antidepressant MAO inhibitor drug, tranylcypromine (10 mg/day for 3 days) after the baseline PET scan and then rescanned to assess the sensitivity of [11C]clorgyline binding to MAO inhibition. MAO A levels were quantified by using the model term lambda k3 which is a function of brain MAO A concentration. Smokers had significantly lower brain MAO A than nonsmokers in all brain regions examined (average reduction, 28%). The mean lambda k3 values for the whole brain were 0.18 +/- 0.04 and 0.13 +/- 0.03 ccbrain (mlplasma)-1 min-1 for nonsmokers and smokers, respectively; P < 0.0003). Tranyl-cypromine treatment reduced lambda k3 by an average of 58% for the different brain regions. Our results show that tobacco smoke exposure is associated with a marked reduction in brain MAO A, and this reduction is about half of that produced by a brief treatment with tranylcypromine. This suggests that MAO A inhibition needs to be considered as a potential contributing variable in the high rate of smoking in depression and in the development of more effective strategies for smoking cessation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Monoaminoxidase A human, recombinant, expressed in baculovirus infected BTI insect cells