Direkt zum Inhalt
Merck
  • Connective tissue fibroblasts from highly regenerative mammals are refractory to ROS-induced cellular senescence.

Connective tissue fibroblasts from highly regenerative mammals are refractory to ROS-induced cellular senescence.

Nature communications (2019-09-29)
Sandeep Saxena, Hemendra Vekaria, Patrick G Sullivan, Ashley W Seifert
ZUSAMMENFASSUNG

A surveillance system in mammals constantly monitors cell activity to protect against aberrant proliferation in response to damage, injury and oncogenic stress. Here we isolate and culture connective tissue fibroblasts from highly regenerative mammals (Acomys and Oryctolagus) to determine how these cells interpret signals that normally induce cellular senescence in non-regenerating mammals (Mus and Rattus). While H2O2 exposure substantially decreases cell proliferation and increases p53, p21, p16, and p19 in cells from mice and rats, cells from spiny mice and rabbits are highly resistant to H2O2. Quantifying oxygen consumption and mitochondrial stability, we demonstrate that increased intracellular H2O2 is rapidly detoxified in regenerating species, but overwhelms antioxidant scavenging in cells from non-regenerative mammals. However, pretreatment with N-acetylcysteine (NAC) protects mouse and rat cells from ROS-induced cellular senescence. Collectively, our results show that intrinsic cellular differences in stress-sensing mechanisms partially explain interspecific variation in regenerative ability.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
N-Acetyl-L-Cystein, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
PO1, ≥98% (HPLC)
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)