Skip to Content
Merck
  • Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo.

Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo.

Carcinogenesis (2008-05-06)
Weidong Yu, Xiaolin Sun, Nancy Clough, Everardo Cobos, Yunxia Tao, Zonghan Dai
ABSTRACT

Abl interactor (Abi) 1 was first identified as the downstream target of Abl tyrosine kinases and was found to be dysregulated in leukemic cells expressing oncogenic Bcr-Abl and v-Abl. Although the accumulating evidence supports a role of Abi1 in actin cytoskeleton remodeling and growth factor/receptor signaling, it is not clear how it contributes to Bcr-Abl-induced leukemogenesis. We show here that Abi1 gene silencing by short hairpin RNA attenuated the Bcr-Abl-induced abnormal actin remodeling, membrane-type 1 metalloproteinase clustering and inhibited cell adhesion and migration on fibronectin-coated surfaces. Although the knock down of Abi1 expression did not affect growth factor-independent growth of Bcr-Abl-transformed Ba/F3 cells in vitro, it impeded competitive expansion of these cells in non obese diabetic (NOD)/ severe combined immuno-deficiency (SCID) mice. Remarkably, the knock down of Abi1 expression in Bcr-Abl-transformed Ba/F3 cells impaired the leukemogenic potential of these cells in NOD/SCID mice. Abi1 contributes to Bcr-Abl-induced leukemogenesis in part through Src family kinases, as the knock down of Abi1 expression attenuates Bcr-Abl-stimulated activation of Lyn. Together, these data provide for the first time the direct evidence that supports a critical role of Abi1 pathway in the pathogenesis of Bcr-Abl-induced leukemia.