Skip to Content
Merck
  • Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.

Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.

ACS nano (2015-02-03)
Antonella Mangraviti, Stephany Yi Tzeng, Kristen Lynn Kozielski, Yuan Wang, Yike Jin, David Gullotti, Mariangela Pedone, Nitsa Buaron, Ann Liu, David R Wilson, Sarah K Hansen, Fausto J Rodriguez, Guo-Dong Gao, Francesco DiMeco, Henry Brem, Alessandro Olivi, Betty Tyler, Jordan J Green
ABSTRACT

Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Thymidine, ≥99.0% (HPLC)
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
4-Amino-1-butanol, 98%
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Thymidine, ≥99%
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Supelco
Tetrahydrofuran, analytical standard
Supelco
Tetrahydrofuran, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Thymidine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
1,4-Butanediol diacrylate, technical grade, contains ~75 ppm hydroquinone as inhibitor
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dytek® EP diamine, 98%
Sigma-Aldrich
3-Amino-1-propanol, 99%
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
3-Amino-1-propanol, ≥99%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Supelco
3-Amino-1-propanol, analytical standard
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
DAPI, for nucleic acid staining
Supelco
3-Amino-1-propanol, Pharmaceutical Secondary Standard; Certified Reference Material