- Dietary sericin enhances epidermal levels of glucosylceramides and ceramides with up-regulating protein expressions of glucosylceramide synthase, β-glucocerebrosidase and acidic sphingomyelinase in NC/Nga mice.
Dietary sericin enhances epidermal levels of glucosylceramides and ceramides with up-regulating protein expressions of glucosylceramide synthase, β-glucocerebrosidase and acidic sphingomyelinase in NC/Nga mice.
We have previously reported that dietary sericin improves epidermal dryness with the increased total Ceramide (Cer) in NC/Nga mice, an animal model of atopic dermatitis (AD). In this study, we hypothesized that the increased level of total Cer induced by dietary sericin would be related to the altered metabolism of glucosylceramide (GlcCer) and sphingomyelin (SM), major precursors of Cer generation. NC/Nga mice were fed a control diet (group CA: atopic control) or diets with 1% silk protein, either sericin (group S) or fibroin (group F) for 10 weeks. In the epidermis of group CA, total Cer (including Cer1, 2, 3/4 and 6) and all GlcCer species were reduced; these levels in group S were increased to levels similar to or higher than in the normal control group of BALB/c mice (group C). In addition, the protein expressions, but not mRNA expressions, of GlcCer synthase, β-glucocerebrosidase, and acidic sphingomyelinase, enzymes for GlcCer synthesis, GlcCer and SM hydrolysis, respectively, were highly increased in group S. The epidermal levels of total Cer (including Cer2, 3/4, and 6) and all GlcCer species and of these enzyme proteins in group F were lower than in group S. Notably, alterations in total SM, SM1, SM3, and SM synthase 1, which were increased in group CA, were not significant between groups S and F. Cer5 and SM2 were not altered among groups. Dietary sericin enhanced the epidermal levels of all GlcCer and most Cer species with up-regulating protein expressions of GlcCer synthase, β-glucocerebrosidase, and acidic sphingomyelinase.