Skip to Content
Merck
All Photos(3)

Documents

67372

Supelco

Melting point standard 283-286°C

analytical standard

Synonym(s):

Anthraquinone, ATQ

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C14H8O2
CAS Number:
Molecular Weight:
208.21
Beilstein:
390030
EC Number:
MDL number:
UNSPSC Code:
20121904
PubChem Substance ID:
NACRES:
NA.24

grade

analytical standard

Quality Level

vapor density

7.16 (vs air)

vapor pressure

1 mmHg ( 190 °C)

shelf life

limited shelf life, expiry date on the label

bp

379-381 °C (lit.)

mp

283-286 °C (±0.3°C)
284-286 °C (lit.)

application(s)

food and beverages
pharmaceutical

format

neat

SMILES string

O=C1c2ccccc2C(=O)c3ccccc13

InChI

1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H

InChI key

RZVHIXYEVGDQDX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Melting point standard 283-286 °C, anthraquinone is an analytical standard, suitable for the day-to-day calibration of melting point apparatus to guarantee its accuracy, in accordance with local, national and international standards laboratories.
The mp value is recorded as an average of 6 to 12 measurements with a Büchi B-545 equipment that is calibrated against primary standards. Melting point is determined by Capillary method, as described in Ph. Eur. 2.2.14.

Application

Anthraquinone melting point standard 283-286 °C is an mp standard used for physicochemical characterization.
This product also features as a reference standard in thermal property investigations.

Features and Benefits

  • Melting point calibration standard traceable to primary standards (LGC, London)
  • Grade: Analytical Standard
  • Melting point validated in the thermodynamic mode of analysis
  • Standard deviation up to ± 0.3 °C
  • Available with certificates of analysis and safety data sheet

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Carc. 1B - Skin Sens. 1

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1

Flash Point(F)

482.0 °F - closed cup

Flash Point(C)

250 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ignition mechanism of flammable dust and dust mixtures: An insight through thermogravimetric/differential scanning calorimetry analysis
Portarapillo M, et al.
AIChE Journal (2020)
C Ma et al.
Journal of applied microbiology, 112(5), 883-891 (2012-03-06)
To isolate an alkaliphilic bacterium and to investigate its ability of extracellular reduction. An alkaliphilic and halotolerant humus-reducing anaerobe, Bacillus pseudofirmus MC02, was successfully isolated from a pH 10·0 microbial fuel cell. To examine its ability of extracellular reduction, AQDS
Rakesh Kumar et al.
Molecular diversity, 15(3), 687-695 (2010-11-30)
H(2)O(2) mediated oxidation of alcohols in ionic liquid is revisited, wherein, ionic liquids under the influence of microwave irradiation have been found to facilitate activation of H(2)O(2) without any metal catalyst in aqueous condition. The method utilizes a neutral ionic
Hai-Yu Hu et al.
Organic letters, 10(21), 5035-5038 (2008-10-11)
The first selective catalytic hydrogenation induced by the artificial helix based on oligo(phenanthroline dicarboxamide)s containing a 9,10-anthraquinone subunit is described. Due to the steric hindrance within the helically folded oligomers, the selective reductions of the anthraquinone units were completely different
Seyed Hadi Ebrahimia et al.
Archives of animal nutrition, 65(4), 267-277 (2011-09-06)
The objective of the present study was to investigate the hypothesis that 9,10-anthraquinone (AQ) in combination with fumaric acid (FMA) may provide complementary effects to inhibit methanogens and enhance rumen's capacity for better utilisation of FMA towards propionate production. Three

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service