Skip to Content
Merck

Nuclear myosin I regulates cell membrane tension.

Scientific reports (2016-08-03)
Tomáš Venit, Alžběta Kalendová, Martin Petr, Rastislav Dzijak, Lukáš Pastorek, Jana Rohožková, Jakub Malohlava, Pavel Hozák
ABSTRACT

Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Actin antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Myosin Iβ (Nuclear) antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-V5 antibody produced in rabbit, IgG fraction of antiserum