Skip to Content
Merck
  • Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes.

Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes.

Organic & biomolecular chemistry (2007-03-07)
Ingrid Dijkgraaf, Anneloes Y Rijnders, Annemieke Soede, Annemarie C Dechesne, G Wilma van Esse, Arwin J Brouwer, Frans H M Corstens, Otto C Boerman, Dirk T S Rijkers, Rob M J Liskamp
ABSTRACT

This report describes the design and synthesis of a series of alpha(V)beta(3) integrin-directed monomeric, dimeric and tetrameric cyclo[Arg-Gly-Asp-d-Phe-Lys] dendrimers using "click chemistry". It was found that the unprotected N-epsilon-azido derivative of cyclo[Arg-Gly-Asp-d-Phe-Lys] underwent a highly chemoselective conjugation to amino acid-based dendrimers bearing terminal alkynes using a microwave-assisted Cu(I)-catalyzed 1,3-dipolar cycloaddition. The alpha(V)beta(3) binding characteristics of the dendrimers were determined in vitro and their in vivoalpha(V)beta(3) targeting properties were assessed in nude mice with subcutaneously growing human SK-RC-52 tumors. The multivalent RGD-dendrimers were found to have enhanced affinity toward the alpha(V)beta(3) integrin receptor as compared to the monomeric derivative as determined in an in vitro binding assay. In case of the DOTA-conjugated (111)In-labeled RGD-dendrimers, it was found that the radiolabeled multimeric dendrimers showed specifically enhanced uptake in alpha(V)beta(3) integrin expressing tumors in vivo. These studies showed that the tetrameric RGD-dendrimer had better tumor targeting properties than its dimeric and monomeric congeners.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-(Trimethylsilyl)-1-propanesulfonic acid sodium salt, 97%