Skip to Content
Merck
All Photos(2)

Key Documents

417580

Sigma-Aldrich

4-Vinylphenylboronic acid

≥95%

Synonym(s):

(4-Ethenylphenyl)boronic acid, (p-Vinylphenyl)boronic acid, 4-Styrylboronic acid, 4-Vinylbenzeneboronic acid, p-Vinylbenzeneboronic acid

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H2C=CHC6H4B(OH)2
CAS Number:
Molecular Weight:
147.97
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.22

Assay

≥95%

form

powder

mp

190-193 °C (lit.)

SMILES string

OB(O)c1ccc(C=C)cc1

InChI

1S/C8H9BO2/c1-2-7-3-5-8(6-4-7)9(10)11/h2-6,10-11H,1H2

InChI key

QWMJEUJXWVZSAG-UHFFFAOYSA-N

Application

4-Vinylphenylboronic acid is commonly used in the synthesis of styrene-based organoboron polymers such as vinyl-oligo(fluorene) polymer and boronic ester based self-healing polymer. It can also be used as a precursor in the synthesis of aggregation induced emission (AIE) dye.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Room-temperature self-healing polymers based on dynamic-covalent boronic esters.
Cash J J, et al.
Macromolecules, 48(7), 2098-2106 (2015)
Living anionic polymerization of styrene derivatives para-substituted with π-conjugated oligo (fluorene) moieties.
Sugiyama K, et al.
Macromolecules, 42(12), 4053-4062 (2009)
Ayman H Kamel et al.
Polymers, 12(6) (2020-06-27)
Herein, we present for the first time a novel potentiometric sensor based on the stimulus-responsive molecularly imprinted polymer (MIP) as a selective receptor for neutral dopamine determination. This smart receptor can change its capabilities to recognize according to external environmental
Facile strategy to well-defined water-soluble boronic acid (co) polymers.
Cambre J N, et al.
Journal of the American Chemical Society, 129(34), 10348-10349 (2007)
Cross-linkable aggregation induced emission dye based red fluorescent organic nanoparticles and their cell imaging applications.
Zhang X, et al.
Polym. Chem., 4(19), 5060-5064 (2013)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service