Skip to Content
Merck
  • Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

Stem cell research & therapy (2015-04-19)
José M Díez, Ewa Bauman, Rodrigo Gajardo, Juan I Jorquera
ABSTRACT

Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Donkey Anti-Mouse IgG Antibody, FITC conjugate, Species Adsorbed, Chemicon®, from donkey
Sigma-Aldrich
Anti-STRO-1 Antibody, clone STRO-1, ascites fluid, clone STRO-1, Chemicon®
Sigma-Aldrich
Anti-Human B cells (CD19) Antibody, clone FMC63, clone FMC63, Chemicon®, from mouse
Sigma-Aldrich
Goat Anti-Mouse IgM Antibody, µ chain, Cy3 conjugate, Chemicon®, from goat
Sigma-Aldrich
Anti-H-CAM Antibody, clone F10-44-2, clone F10-44-2, Chemicon®, from mouse
Sigma-Aldrich
Anti-Endoglin (CD105) Antibody, clone 44G4, clone 44G4, from mouse