Skip to Content
Merck
  • Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment.

Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment.

Journal of lipid research (2015-10-16)
Daniel Steil, Catherine-Louise Schepers, Gottfried Pohlentz, Nadine Legros, Jana Runde, Hans-Ulrich Humpf, Helge Karch, Johannes Müthing
ABSTRACT

Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Cholesterol, from lanolin, ≥99.0% (GC)
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium taurodeoxycholate hydrate, BioXtra, ≥97% (TLC)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Sodium taurodeoxycholate hydrate, ≥95% (HPLC)
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%