Skip to Content
Merck
  • Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS.

Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS.

Contact dermatitis (2006-05-13)
Carola Lidén, Lizbet Skare, Birger Lind, Gun Nise, Marie Vahter
ABSTRACT

There is a great need to accurately assess skin exposure to contact allergens. We have developed a technique for assessment of skin exposure to nickel, chromium and cobalt using acid wipe sampling by cellulose wipes with 1% nitric acid. Chemical analysis was performed by inductively coupled plasma mass spectrometry (ICP-MS). The recovery of nickel, chromium and cobalt from arms and palms was 93%. The analytical result is expressed in terms of mass per unit area (microg/cm(2)). The developed acid wipe sampling technique is suitable for determination of nickel, chromium and cobalt deposited on the skin. The technique may be used in workplace studies, in studies of individuals in the general population, in dermatitis patients, in identification of risk groups, as well as in developing preventive strategies and in follow-up after intervention.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cobalt, foil, thickness 0.1 mm, ≥99.99%
Sigma-Aldrich
Chromium, powder, ≥99% trace metals basis, <45 μm
Sigma-Aldrich
Chromium, powder, 99.5%, −100 mesh
Sigma-Aldrich
Cobalt, pieces, 99.5% trace metals basis
Sigma-Aldrich
Cobalt, wire, diam. 1.0 mm, 99.995% trace metals basis
Sigma-Aldrich
Cobalt, foil, thickness 1.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Cobalt, rod, diam. 5.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Cobalt, powder, 2 μm particle size, 99.8% trace metals basis
Sigma-Aldrich
Chromium, chips, thickness ~2 mm, 99.5%
Sigma-Aldrich
Cobalt, granular, 99.99% trace metals basis
Sigma-Aldrich
Chromium, chips, 99.995% trace metals basis
Sigma-Aldrich
Cobalt, foil, thickness 0.1 mm, 99.95% trace metals basis
Sigma-Aldrich
Cobalt, powder, <150 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Cobalt, Carbon coated magnetic, nanopowder, <50 nm particle size (TEM), ≥99%