Skip to Content
Merck
  • Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM.

Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM.

Journal of cellular and molecular medicine (2019-11-05)
Qianqian Li, Yufeng Yao, Shumei Shi, Mengchen Zhou, Yingchao Zhou, Mengru Wang, Jeng-Jiann Chiu, Zhengrong Huang, Weili Zhang, Min Liu, Qing Wang, Xin Tu
ABSTRACT

In type 1 and type 2 diabetes mellitus, increased cardiac fibrosis, stiffness and associated diastolic dysfunction may be the earliest pathological phenomena in diabetic cardiomyopathy. Endothelial-mesenchymal transition (EndMT) in endothelia cells (ECs) is a critical cellular phenomenon that increases cardiac fibroblasts (CFs) and cardiac fibrosis in diabetic hearts. The purpose of this paper is to explore the molecular mechanism of miR-21 regulating EndMT and cardiac perivascular fibrosis in diabetic cardiomyopathy. In vivo, hyperglycaemia up-regulated the mRNA level of miR-21, aggravated cardiac dysfunction and collagen deposition. The condition was recovered by inhibition of miR-21 following with improving cardiac function and decreasing collagen deposition. miR-21 inhibition decreased cardiac perivascular fibrosis by suppressing EndMT and up-regulating SMAD7 whereas activating p-SMAD2 and p-SMAD3. In vitro, high glucose (HG) up-regulated miR-21 and induced EndMT in ECs, which was decreased by inhibition of miR-21. A highly conserved binding site of NF-κB located in miR-21 5'-UTR was identified. In ECs, SMAD7 is directly regulated by miR-21. In conclusion, the pathway of NF-κB/miR-21/SMAD7 regulated the process of EndMT in T1DM, in diabetic cardiomyopathy, which may be regarded as a potential clinical therapeutic target for cardiac perivascular fibrosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Streptozocin, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
D-(+)-Glucose solution, 100 g/L in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
L-(−)-Glucose, ≥99%