Skip to Content
Merck
  • Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Bioorganic & medicinal chemistry (2008-12-06)
Alfonso Pérez-Garrido, Aliuska Morales Helguera, Adela Abellán Guillén, M Natália D S Cordeiro, Amalio Garrido Escudero
ABSTRACT

This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
3-Methoxyphenol, 96%
Sigma-Aldrich
4-Chlorophenol, ≥99%
Sigma-Aldrich
3,3-Dimethyl-2-butanol, 98%
Sigma-Aldrich
3,5-Dichlorophenol, 97%
Sigma-Aldrich
N-Methylaniline, 98%
Sigma-Aldrich
p-Tolyl acetate, 99%
Sigma-Aldrich
N,N-Dimethylaniline, ReagentPlus®, 99%
Supelco
Tetrahydrofuran, HPLC grade, ≥99.9%, inhibitor-free
Sigma-Aldrich
2-Hexanol, 99%
Sigma-Aldrich
Acetaldehyde solution, 50 wt. % in ethanol
Sigma-Aldrich
trans-3-Hydroxycinnamic acid, 99%
Sigma-Aldrich
Bromobenzene, ReagentPlus®, 99%
Sigma-Aldrich
Benzaldehyde, purified by redistillation, ≥99.5%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Benzaldehyde, natural, FCC, FG
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
2-Methyl-1-butanol, ≥99%
Sigma-Aldrich
Acetanilide, purified by sublimation, ≥99.9%
Sigma-Aldrich
Acetanilide, zone-refined, purified by sublimation, ≥99.95%
Sigma-Aldrich
Ethyl benzoate, ≥99%, FCC, FG
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Benzothiazole, 96%
Sigma-Aldrich
Fluorobenzene, 99%
Sigma-Aldrich
1,5-Pentanediol, 96%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Aniline, ReagentPlus®, 99%
Sigma-Aldrich
1,4-Diiodobenzene, 99%
Sigma-Aldrich
Ethyl benzoate, natural, ≥99%, FCC, FG
Sigma-Aldrich
4′-Hydroxyacetophenone, 99%