Skip to Content
Merck
  • Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites.

Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites.

Nature communications (2019-09-15)
Søs Grønbæk Holdgaard, Valentina Cianfanelli, Emanuela Pupo, Matteo Lambrughi, Michal Lubas, Julie C Nielsen, Susana Eibes, Emiliano Maiani, Lea M Harder, Nicole Wesch, Mads Møller Foged, Kenji Maeda, Francesca Nazio, Laura R de la Ballina, Volker Dötsch, Andreas Brech, Lisa B Frankel, Marja Jäättelä, Franco Locatelli, Marin Barisic, Jens S Andersen, Simon Bekker-Jensen, Anders H Lund, Vladimir V Rogov, Elena Papaleo, Letizia Lanzetti, Daniela De Zio, Francesco Cecconi
ABSTRACT

The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-γ-Tubulin antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone VIN-11-5, ascites fluid
Sigma-Aldrich
Anti-γ-Tubulin antibody, Mouse monoclonal, clone GTU-88, purified from hybridoma cell culture
Sigma-Aldrich
Anti-SSX2IP antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-HA antibody, Mouse monoclonal, clone HA-7, purified from hybridoma cell culture
Sigma-Aldrich
Monoclonal Anti-β-Tubulin antibody produced in mouse, clone TUB 2.1, ascites fluid
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Anti-OFD1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-GAPDH Mouse mAb (6C5), liquid, clone 6C5, Calbiochem®