- Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI.
Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein AI.
In this study, we investigated the impact of enhancing cholesterol delivery to mitochondrial sterol 27-hydroxylase, via steroidogenic acute regulatory protein (StAR), on the expression of genes involved in macrophage cholesterol homeostasis and efflux of cholesterol to apolipoprotein (apo) AI. Stably transfected, murine (RAW 264.7) macrophages were used to investigate the role of StAR in cholesterol homeostasis. Cellular responses were analysed using quantitative PCR, immunoblotting, and an LXRE reporter plasmid; [3H]cholesterol efflux was measured in the presence or absence of apoAI. Macrophage overexpression of mitochondrial cholesterol trafficking protein, StAR, activates and induces expression of liver X receptors (LXRs), and significantly alters expression of genes involved in cholesterol homeostasis, decreasing Fdps, Hmgcr, Mvk, Ldlr, and Scap, and markedly increasing Abca1 mRNA and protein. Overexpression of StAR, but not mutated 'loss-of-function' (R181L) StAR, enhanced efflux of [3H]cholesterol to apoAI, and this effect was maintained in macrophages pretreated with LDL or acetylated LDL. The effect of StAR overexpression on apoAI-dependent [3H]cholesterol efflux was mimicked by non-sterol agonist, T901317, and 27-hydroxycholesterol, and blocked by LXR inhibitor, geranylgeranyl pyrophosphate, sterol 27-hydroxylase inhibitor, GW273297x, and probucol, inhibitor of ATP binding cassette transporter A1 (ABCA1). Importantly, all observed effects of StAR overexpression were dependent upon cyclic AMP (cAMP analogue, dibutyryl cAMP), which is required for the full activity of the StAR protein to be manifested. Macrophage overexpression of StAR significantly enhances LXR-dependent apoAI- and ABCA1-dependent cholesterol efflux, by which disposal of excess arterial cholesterol deposits and atheroma regression can be achieved.