Skip to Content
Merck
  • Jedi-1 deficiency increases sensory neuron excitability through a non-cell autonomous mechanism.

Jedi-1 deficiency increases sensory neuron excitability through a non-cell autonomous mechanism.

Scientific reports (2020-01-30)
Alexandra J Trevisan, Mary Beth Bauer, Rebecca L Brindley, Kevin P M Currie, Bruce D Carter
ABSTRACT

The dorsal root ganglia (DRG) house the primary afferent neurons responsible for somatosensation, including pain. We previously identified Jedi-1 (PEAR1/MEGF12) as a phagocytic receptor expressed by satellite glia in the DRG involved in clearing apoptotic neurons during development. Here, we further investigated the function of this receptor in vivo using Jedi-1 null mice. In addition to satellite glia, we found Jedi-1 expression in perineurial glia and endothelial cells, but not in sensory neurons. We did not detect any morphological or functional changes in the glial cells or vasculature of Jedi-1 knockout mice. Surprisingly, we did observe changes in DRG neuron activity. In neurons from Jedi-1 knockout (KO) mice, there was an increase in the fraction of capsaicin-sensitive cells relative to wild type (WT) controls. Patch-clamp electrophysiology revealed an increase in excitability, with a shift from phasic to tonic action potential firing patterns in KO neurons. We also found alterations in the properties of voltage-gated sodium channel currents in Jedi-1 null neurons. These results provide new insight into the expression pattern of Jedi-1 in the peripheral nervous system and indicate that loss of Jedi-1 alters DRG neuron activity indirectly through an intercellular interaction between non-neuronal cells and sensory neurons.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deoxyribonuclease I from bovine pancreas, Type IV, lyophilized powder, ≥2,000 Kunitz units/mg protein
Sigma-Aldrich
Collagen, Type I solution from rat tail, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
Evans Blue, Dye content ≥75 %
Sigma-Aldrich
Collagenase from Clostridium histolyticum, non-sterile; 0.2 μm filtered, Type IA-S, 0.5-5.0 FALGPA units/mg solid, ≥125 CDU/mg solid