Skip to Content
Merck
  • Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.

Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.

Enzyme and microbial technology (2015-05-24)
Yuhong Huang, Peter Kamp Busk, Lene Lange
ABSTRACT

Specific enzymes from plant-pathogenic microbes demonstrate high effectiveness for natural lignocellulosic biomass degradation and utilization. The secreted lignocellulolytic enzymes of Fusarium species have not been investigated comprehensively, however. In this study we compared cellulose and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose decomposing enzymes (GH3, GH5, GH6, GH7, GH9, GH45 and AA9), and abundant hemicellulases. We further applied peptide pattern recognition to reveal nine and seven subfamilies of GH10 and GH11 family enzymes, respectively. The uncharacterized XYL10A, XYL10B and XYL11 enzymes of F. commune were classified, respectively, into GH10 subfamily 1, subfamily 3 and GH11 subfamily 1. These xylanases were successfully expressed in the PichiaPink™ system with the following properties: the purified recombinant XYL10A had interesting high specific activity; XYL10B was active at alkaline conditions with both endo-1,4-β-d-xylanase and β-xylosidase activities; and XYL11 was a true xylanase characterized by high substrate specificity. These results indicate that F. commune with genetic modification is a promising source of enzymes for the decomposition of lignocellulosic biomass.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)