Skip to Content
Merck
  • Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis.

Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis.

Infection and immunity (2014-04-16)
James A Cotton, Amol Bhargava, Jose G Ferraz, Robin M Yates, Paul L Beck, Andre G Buret
ABSTRACT

Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1,4-Dithioerythritol, ≥99.0% (RT), BioUltra
Sigma-Aldrich
Citrate Concentrated Solution, BioUltra, for molecular biology, 1 M in H2O
Sigma-Aldrich
1,4-Dithioerythritol, ≥99.0%
Sigma-Aldrich
1,4-Dithioerythritol, BioReagent, for molecular biology, ≥99.0%
Sigma-Aldrich
1,4-Dithioerythritol, BioXtra, ≥99.0%
Sigma-Aldrich
Citrate Concentrated Solution, BioReagent, suitable for coagulation assays, 4 % (w/v)
Supelco
Sodium Citrate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
E-64d, protease inhibitor
Arginine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Minimum Essential Medium Eagle, With Earle′s salts, non-essential amino acids and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
USP
Piperacillin, United States Pharmacopeia (USP) Reference Standard
Piperacillin, European Pharmacopoeia (EP) Reference Standard