- Mice with an absent stress response are protected against ischemic renal injury.
Mice with an absent stress response are protected against ischemic renal injury.
Inducible heat shock proteins (HSPs), regulated by heat shock factor-1 (HSF-1), protect against renal cell injury in vitro. To determine whether HSPs ameliorate ischemic renal injury in vivo, HSF-1 functional knockout mice (HSF-KO) were compared with wild-type mice following bilateral ischemic renal injury. Following injury, the kidneys of wild-type mice had the expected induction of HSP70 and HSP25; a response absent in the kidneys of HSF-KO mice. Baseline serum creatinine was equivalent between strains. Serum creatinine at 24 h reflow in HSF-KO mice was significantly lower than that in the wild type. Histology showed similar tubule injury in both strains after ischemic renal injury but increased medullary vascular congestion in wild-type compared with HSF-KO mice. Flow cytometry of mononuclear cells isolated from kidneys showed no difference between strains in the number of CD4(+) and CD8(+) T cells in sham-operated animals. At 1 h of reflow, CD4(+) and CD8(+) cells were doubled in the kidneys of wild-type but not HSF-KO mice. Foxp3(+) T-regulatory cells were significantly more abundant in the kidneys of sham-operated HSF-KO than wild-type mice. Suppression of CD25(+)Foxp3(+) cells in HSF-KO kidneys with the anti-CD25 antibody PC61 reversed the protection against ischemic renal injury. Thus, HSF-KO mice are protected from ischemic renal injury by a mechanism that depends on an increase in the T-regulatory cells in the kidney associated with altered T-cell infiltration early in reflow. Hence, stress response activation may contribute to early injury by facilitating T-cell infiltration into ischemic kidney.