Skip to Content
Merck
  • Preparation and characterization of mesoporous Ag/VO(x)-TiO2 employed for catalytic hydroxylation of benzene.

Preparation and characterization of mesoporous Ag/VO(x)-TiO2 employed for catalytic hydroxylation of benzene.

Journal of nanoscience and nanotechnology (2014-04-18)
Dan Xu, Lele Liu, Zhenlong Zhao, Lihua Jia, Xiangfeng Guo, Rui Yang, Yu Zhang
ABSTRACT

The V-based complex oxides were found to exhibit good catalytic reactivity for the selective oxidation of benzene to phenol. In order to understand the effect of the catalyst on the reaction, a series of Ag/VO(x)-TiO2 catalysts with different Ag loadings were prepared. Data from the X-ray diffraction (XRD), N2-adsorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) showed the formation of complex oxides with phases of silver and vanadates, and the increased redox ability of vanadium species. The results from H2-TPR revealed that the addition of Ag promoted the reduction of vanadium species in the complex catalysts. The presence of Ag and Ag+ ions at the catalyst surface were proved independently by XPS measurements. The Ag and Ag+ ions also effectively strengthened the thermostability of the Ag/VO(x)-TiO2 catalyst, and the Ag species also made a strong contribution to the monodispersion of vanadium on the surface of the TiO2 carrier. The reactivity for the selective oxidation of benzene was evaluated by using a liquid-phase reaction unit, and was correlated with the surface redox property of the catalysts.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 1.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 1.0 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Silver, wire, diam. 0.5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 0.1 mm, 99.9% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Titanium, IRMM®, certified reference material, 0.5 mm wire
Titanium, IRMM®, certified reference material, 0.5 mm foil
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~90,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~120,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~86,000
Sigma-Aldrich
Silver, foil, thickness 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~10,000
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Silver, foil, thickness 2.0 mm, 99.9% trace metals basis
Sigma-Aldrich
Silver, powder, <250 μm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Sigma-Aldrich
Silver, wire, diam. 0.127 mm, 99.99% trace metals basis
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose