Skip to Content
Merck
  • Design and fabrication of carbon quantum dots/TiO2 photonic crystal complex with enhanced photocatalytic activity.

Design and fabrication of carbon quantum dots/TiO2 photonic crystal complex with enhanced photocatalytic activity.

Journal of nanoscience and nanotechnology (2014-04-18)
Zhong Huang, Liang Fang, Wen Dong, Yang Liu, Zhenhui Kang
ABSTRACT

TiO2 photonic crystal photocatalyst with inverse opal structure were first prepared from self-assembled polystyrene spheres template, and then carbon quantum dots (CQDs) was coupled with TiO2 inverse opal through a facile electrodeposition method. The obtained CQDs/TiO2 complex photocatalysts exhibit enhanced photocatalytic activity compared to pure TiO2 inverse opal, especially under the irradiation of visible light. Our results provide a promising methodology for designing high performance photocatalysts based on photonic crystal and CQDs, which is benefit for catalytic and new energy applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Titanium, IRMM®, certified reference material, 0.5 mm wire
Titanium, IRMM®, certified reference material, 0.5 mm foil
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Titanium, microfoil, disks, 10mm, thinness 0.1μm, specific density 42.8μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 10mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 9.5mm, inside diameter 8.2mm, wall thickness 0.65mm, annealed, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, tube, 1000mm, outside diameter 12.7mm, inside diameter 10.9mm, wall thickness 0.9mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 16mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 16mm, as drawn, 99.99+%
Titanium, rod, 200mm, diameter 2mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 1.0μm, specific density 429μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 2mm, as drawn, 99.99+%
Titanium, tube, 200mm, outside diameter 6.35mm, inside diameter 5.53mm, wall thickness 0.41mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 6.1mm, inside diameter 5.1mm, wall thickness 0.5mm, annealed, 99.6+%