Skip to Content
Merck

Microbial transformation of quinoline by a Pseudomonas sp.

Applied and environmental microbiology (1986-06-01)
O P Shukla
ABSTRACT

A Pseudomonas sp. isolated from sewage by enrichment culture on quinoline metabolized this substrate by a novel pathway involving 8-hydroxycoumarin. During early growth of the organism on quinoline, 2-hydroxyquinoline accumulated as the intermediate; 8-hydroxycoumarin accumulated as the major metabolite on further incubation. 2,8-Dihydroxyquinoline and 2,3-dihydroxyphenylpropionic acid were identified as the other intermediates. Inhibition of quinoline metabolism by 1 mM sodium arsenite led to the accumulation of pyruvate, whereas inhibition by 5 mM arsenite resulted in the accumulation of 2-hydroxyquinoline as the major metabolite and 2,8-dihydroxyquinoline as the minor metabolite. Coumarin was not utilized as a growth substrate by this bacterium, but quinoline-grown cells converted it to 2-hydroxyphenylpropionic acid, which was not further metabolized. Quinoline, 2-hydroxyquinoline, 8-hydroxycoumarin, and 2,3-dihydroxyphenylpropionic acid were rapidly oxidized by quinoline-adapted cells, whereas 2,8-dihydroxyquinoline was oxidized very slowly. Quinoline catabolism in this Pseudomonas sp. is therefore initiated by hydroxylation(s) of the molecule followed by cleavage of the pyridine ring to yield 8-hydroxycoumarin, which is further metabolized via 2,3-dihydroxyphenylpropionic acid.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,8-Quinolinediol, ≥99.0% (HPLC)