Skip to Content
Merck
  • Polarized SCAR and the Arp2/3 complex regulate apical cortical remodeling in asymmetrically dividing neuroblasts.

Polarized SCAR and the Arp2/3 complex regulate apical cortical remodeling in asymmetrically dividing neuroblasts.

iScience (2023-07-12)
Giulia Cazzagon, Chantal Roubinet, Buzz Baum
ABSTRACT

Although the formin-nucleated actomyosin cortex has been shown to drive the changes in cell shape that accompany animal cell division in both symmetric and asymmetric cell divisions, the mitotic role of cortical Arp2/3-nucleated actin networks remain unclear. Here using asymmetrically dividing Drosophila neural stem cells as a model system, we identify a pool of membrane protrusions that form at the apical cortex of neuroblasts as they enter mitosis. Strikingly, these apically localized protrusions are enriched in SCAR, and depend on SCAR and Arp2/3 complexes for their formation. Because compromising SCAR or the Arp2/3 complex delays the apical clearance of Myosin II at the onset of anaphase and induces cortical instability at cytokinesis, these data point to a role for an apical branched actin filament network in fine-tuning the actomyosin cortex to enable the precise control of cell shape changes during an asymmetric cell division.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Latrunculin B from Latruncula magnifica, ≥80% (HPLC), solid
Sigma-Aldrich
Arp2/3 Complex Inhibitor I, Inactive Control, CK-689, The Arp2/3 Complex Inhibitor I, Inactive Control, CK-689, also referenced under CAS 170930-46-8, controls the biological activity of Arp2/3. This small molecule/inhibitor is primarily used for Cell Structure applications.
Sigma-Aldrich
CK-666, ≥98% (HPLC), powder