- Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which binds and activates enhancer II of hepatitis B virus.
Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which binds and activates enhancer II of hepatitis B virus.
Enhancer II (ENII) of hepatitis B virus (HBV) is one of the essential cis-elements for the transcriptional regulation of HBV gene expression. Its function is highly liver-specific, suggesting that liver-enriched transcriptional factors play critical roles in regulating the activity of ENII. In this report, a novel hepatocyte transcription factor, which binds specifically to the B1 region (AACGACCGACCTTGAG) within the major functional unit (B unit) of ENII, has been cloned from a human liver cDNA library by yeast one-hybrid screening, and demonstrated to trans-activate ENII via the B1 region. We named this factor hB1F, for human B1-binding factor. Amino acid analysis revealed this factor structurally belongs to nuclear receptor superfamily. Based on the sequence similarities, hB1F is characterized to be a novel human homolog of the orphan receptor fushi tarazu factor I (FTZ-F1). Using reverse transcription-polymerase chain reaction, a splicing isoform of hB1F (hB1F-2) was identified, which has an extra 46 amino acid residues in the A/B region. Examination of the tissue distribution has revealed an abundant 5.2-kilobase transcript of hB1F is present specifically in human pancreas and liver. Interestingly, an additional transcript of 3.8 kilobases was found to be present in hepatoma cells HepG2. Fluorescent in situ hybridization has mapped the gene locus of hB1F to the region q31-32.1 of human chromosome 1. Altogether, this study provides the first report that a novel human homolog of FTZ-F1 binds and regulates ENII of HBV. The potential roles of this FTZ-F1 homolog in tissue-specific gene regulation, in embryonic development, as well as in liver carcinogenesis are discussed.