Skip to Content
Merck
  • Nucleotide de novo synthesis increases breast cancer stemness and metastasis via cGMP-PKG-MAPK signaling pathway.

Nucleotide de novo synthesis increases breast cancer stemness and metastasis via cGMP-PKG-MAPK signaling pathway.

PLoS biology (2020-11-14)
Yajing Lv, Xiaoshuang Wang, Xiaoyu Li, Guangwei Xu, Yuting Bai, Jiayi Wu, Yongjun Piao, Yi Shi, Rong Xiang, Longlong Wang
ABSTRACT

Metabolic reprogramming to fulfill the biosynthetic and bioenergetic demands of cancer cells has aroused great interest in recent years. However, metabolic reprogramming for cancer metastasis has not been well elucidated. Here, we screened a subpopulation of breast cancer cells with highly metastatic capacity to the lung in mice and investigated the metabolic alternations by analyzing the metabolome and the transcriptome, which were confirmed in breast cancer cells, mouse models, and patients' tissues. The effects and the mechanisms of nucleotide de novo synthesis in cancer metastasis were further evaluated in vitro and in vivo. In our study, we report an increased nucleotide de novo synthesis as a key metabolic hallmark in metastatic breast cancer cells and revealed that enforced nucleotide de novo synthesis was enough to drive the metastasis of breast cancer cells. An increased key metabolite of de novo synthesis, guanosine-5'-triphosphate (GTP), is able to generate more cyclic guanosine monophosphate (cGMP) to activate cGMP-dependent protein kinases PKG and downstream MAPK pathway, resulting in the increased tumor cell stemness and metastasis. Blocking de novo synthesis by silencing phosphoribosylpyrophosphate synthetase 2 (PRPS2) can effectively decrease the stemness of breast cancer cells and reduce the lung metastasis. More interestingly, in breast cancer patients, the level of plasma uric acid (UA), a downstream metabolite of purine, is tightly correlated with patient's survival. Our study uncovered that increased de novo synthesis is a metabolic hallmark of metastatic breast cancer cells and its metabolites can regulate the signaling pathway to promote the stemness and metastasis of breast cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(±)-Verapamil hydrochloride, ≥99% (titration), powder
Supelco
Ammonium formate, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Anti-PFAS antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution, Ab2
Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate tris salt, ≥97% (HPLC), powder
Sigma-Aldrich
Reserpine
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
bisBenzimide H 33342 trihydrochloride, ≥98% (HPLC and TLC)