콘텐츠로 건너뛰기
Merck
  • Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart.

Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart.

Nature communications (2013-08-07)
Atsushi Hoshino, Yuichiro Mita, Yoshifumi Okawa, Makoto Ariyoshi, Eri Iwai-Kanai, Tomomi Ueyama, Koji Ikeda, Takehiro Ogata, Satoaki Matoba
초록

Cumulative evidence indicates that mitochondrial dysfunction has a role in heart failure progression, but whether mitochondrial quality control mechanisms are involved in the development of cardiac dysfunction remains unclear. Here we show that cytosolic p53 impairs autophagic degradation of damaged mitochondria and facilitates mitochondrial dysfunction and heart failure in mice. Prevalence and induction of mitochondrial autophagy is attenuated by senescence or doxorubicin treatment in vitro and in vivo. We show that cytosolic p53 binds to Parkin and disturbs its translocation to damaged mitochondria and their subsequent clearance by mitophagy. p53-deficient mice show less decline of mitochondrial integrity and cardiac functional reserve with increasing age or after treatment with doxorubicin. Furthermore, overexpression of Parkin ameliorates the functional decline in aged hearts, and is accompanied by decreased senescence-associated β-galactosidase activity and proinflammatory phenotypes. Thus, p53-mediated inhibition of mitophagy modulates cardiac dysfunction, raising the possibility that therapeutic activation of mitophagy by inhibiting cytosolic p53 may ameliorate heart failure and symptoms of cardiac ageing.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Monoclonal Anti-α-Actinin (Sarcomeric) antibody produced in mouse, clone EA-53, ascites fluid
Sigma-Aldrich
Anti-H-Ras Antibody, clone 7D7.2, clone 7D7.2, Chemicon®, from mouse
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse