콘텐츠로 건너뛰기
Merck

Dynamics of virus spread in the presence of fluid flow.

Integrative biology : quantitative biosciences from nano to macro (2009-12-23)
Samartha G Anekal, Ying Zhu, Michael D Graham, John Yin
초록

The dynamics of viral infection spread, whether in laboratory cultures or in naturally infected hosts, reflects a coupling of biological and physical processes that remain to be fully elucidated. Biological processes include the kinetics of virus growth in infected cells while physical processes include transport of virus progeny from infected cells, where they are produced, to susceptible cells, where they initiate new infections. Mechanistic models of infection spread have been widely developed for systems where virus growth is coupled with transport of virus particles by diffusion, but they have yet to be developed for systems where viruses move under the influence of fluid flows. Recent experimental observations of flow-enhanced infection spread in laboratory cultures motivate here the development of initial continuum and discrete virus-particle models of infection spread. The magnitude of a dimensionless group, the Damköhler number, shows how parameters that characterize particle adsorption to cells, strain rates that reflect flow profiles, and diffusivities of virus particles combine to influence the spatial pattern of infection spread.