콘텐츠로 건너뛰기
Merck
  • Differences in MEK inhibitor efficacy in molecularly characterized low-grade serous ovarian cancer cell lines.

Differences in MEK inhibitor efficacy in molecularly characterized low-grade serous ovarian cancer cell lines.

American journal of cancer research (2016-11-09)
Marta Llauradó Fernández, Gabriel E DiMattia, Amy Dawson, Sylvia Bamford, Shawn Anderson, Bryan T Hennessy, Michael S Anglesio, Trevor G Shepherd, Clara Salamanca, Josh Hoenisch, Anna Tinker, David G Huntsman, Mark S Carey
초록

Advanced or recurrent low-grade serous ovarian cancers (LGSC) are resistant to conventional systemic treatments. LGSC carry mutations in RAS or RAF, leading to several clinical trials evaluating MEK inhibitors (MEKi). As LGSC cell lines and xenografts have been difficult to establish, little is known about the efficacy and on-target activity of MEKi treatment in this disease. We compared four different MEKi (trametinib, selumetinib, binimetinib and refametinib) in novel LGSC patient-derived cell lines. Molecular characterization of these cells included copy-number variation and hotspot mutational analysis. Proliferation, apoptosis and cell viability assays were used to study drug efficacy. MEKi on-target efficacy was measured using western blotting and isoelectric point focusing for ERK1/2 phosphorylation. Ten LGSC cell lines were derived from 7 patients with advanced/recurrent disease. Copy number variation showed significant heterogeneity among cell lines, however all samples showed deletions in chromosome 9p21.3, and frequent copy number gains in chromosomes 12 and 20. Mutations in KRAS/NRAS were identified in 4 patients (57%) and RAS mutation status was not associated with higher baseline levels of ERK phosphorylation. Different degrees of MEKi sensitivity were observed in the LGSC cell lines. Two cell lines, both with KRAS mutations, were highly sensitive to MEKi. Drug anti-proliferative efficacy correlated with the degree of inhibition of ERK phosphorylation, with trametinib being the most potent agent. Differences in MEKi efficacy were observed in LGSC cell lines. Trametinib showed the greatest anti-proliferative effects. This study serves as a basis for much needed future research on MEKi drug efficacy in LGSC.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-Mouse IgG (Fab specific)–Peroxidase antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat, affinity isolated antibody
Sigma-Aldrich
MCDB 105 Medium, With trace elements, L-glutamine and 25mM HEPES, powder, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-Vinculin antibody produced in mouse, clone hVIN-1, ascites fluid