콘텐츠로 건너뛰기
Merck
  • Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways.

Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways.

Particle and fibre toxicology (2016-02-05)
Chiara Uboldi, Thierry Orsière, Carine Darolles, Valérie Aloin, Virginie Tassistro, Isabelle George, Véronique Malard
초록

Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxic effects via a Trojan-horse mechanism. Once internalized into lysosomal and acidic intracellular compartments, Co3O4P slowly release a low amount of cobalt ions (Co(2+)) that impair the viability of in vitro cultures. In this study, we focused on the genotoxic potential of Co3O4P by performing a comprehensive investigation of the DNA damage exerted in BEAS-2B human bronchial epithelial cells. Our results demonstrate that poorly soluble Co3O4P enhanced the formation of micronuclei in binucleated cells. Moreover, by comet assay we showed that Co3O4P induced primary and oxidative DNA damage, and by scoring the formation of γ-H2Ax foci, we demonstrated that Co3O4P also generated double DNA strand breaks. By comparing the effects exerted by poorly soluble Co3O4P with those obtained in the presence of soluble cobalt chloride (CoCl2), we demonstrated that the genotoxic effects of Co3O4P are not simply due to the released Co(2+) but are induced by the particles themselves, as genotoxicity is observed at very low Co3O4P concentrations.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301, clone JBW301, Upstate®, from mouse
Latex beads, polystyrene, 0.3 μm mean particle size