콘텐츠로 건너뛰기
Merck
  • Evolutionary conservation of the active site of soluble inorganic pyrophosphatase.

Evolutionary conservation of the active site of soluble inorganic pyrophosphatase.

Trends in biochemical sciences (1992-07-01)
B S Cooperman, A A Baykov, R Lahti
초록

Soluble inorganic pyrophosphatases (PPases) are essential enzymes that are important for controlling the cellular levels of inorganic pyrophosphate (PPi). Although prokaryotic and eukaryotic PPases differ substantially in amino acid sequence, recent evidence now demonstrates clearly that PPases throughout evolution show a remarkable level of conservation of both an extended active site structure, which has the character of a mini-mineral, and a catalytic mechanism. PPases require several (three or four) Mg2+ ions at the active site for activity and many of the 15-17 fully conserved active site residues are directly involved in the binding of metal ions. Each of the eight microscopic rate constants that has been evaluated for the PPases from both Escherichia coli and Saccharomyces cerevisiae is quite similar in magnitude for the two enzymes, supporting the notion of a conserved mechanism.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Pyrophosphatase, Inorganic from Escherichia coli, recombinant, expressed in E. coli, lyophilized powder, ≥90%, ≥800 units/mg protein
Sigma-Aldrich
Inorganic Pyrophosphatase from Escherichia coli, ≥100 units/mL, buffered aqueous solution