콘텐츠로 건너뛰기
Merck
  • von Hippel-Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity.

von Hippel-Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity.

The Journal of biological chemistry (2004-10-27)
Maria V Panchenko, Mina I Zhou, Herbert T Cohen
초록

Jade-1 was identified as a protein partner of the von Hippel-Lindau tumor suppressor pVHL. The interaction of Jade-1 and pVHL correlates with renal cancer risk. We have investigated the molecular function of Jade-1. Jade-1 has two zinc finger motifs called plant homeodomains (PHD). A line of evidence suggests that the PHD finger functions in chromatin remodeling and protein-protein interactions. We determined the cellular localization of Jade-1 and examined whether Jade-1 might have transcriptional and histone acetyltransferase (HAT) functions. Biochemical cell fractionation studies as well as confocal images of cells immunostained with a specific Jade-1 antibody revealed that endogenous Jade-1 is localized predominantly in the cell nucleus. Tethering of Gal4-Jade-1 fusion protein to Gal4-responsive promoters in co-transfection experiments activated transcription 5-6-fold, indicating that Jade-1 is a possible transcriptional activator. It was remarkable that overexpression of Jade-1 in cultured cells specifically increased levels of endogenous acetylated histone H4, but not histone H3, strongly suggesting that Jade-1 associates with HAT activity specific for histone H4. Deletion of the two PHD fingers completely abolished Jade-1 transcriptional and HAT activities, indicating that these domains are indispensable for Jade-1 nuclear functions. In addition, we demonstrated that TIP60, a known HAT with histone H4/H2A specificity, physically associates with Jade-1 and is able to augment Jade-1 HAT function in live cells, strongly suggesting that TIP60 might mediate Jade-1 HAT activity. Thus, Jade-1 is a novel candidate transcriptional co-activator associated with HAT activity and may play a key role in the pathogenesis of renal cancer and von Hippel-Lindau disease.