콘텐츠로 건너뛰기
Merck
  • DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites.

DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-04-10)
Shuai Li, Joshua M Sukeena, Aaron B Simmons, Ethan J Hansen, Renee E Nuhn, Ivy S Samuels, Peter G Fuerst
초록

In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-Choline Acetyltransferase Antibody, Chemicon®, from goat
가격 및 재고 정보를 현재 이용할 수 없음