콘텐츠로 건너뛰기
Merck
  • Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo.

Descending control of the respiratory neuronal network by the midbrain periaqueductal grey in the rat in vivo.

The Journal of physiology (2012-11-07)
Hari H Subramanian
초록

Emotional reactions such as vocalization take place during expiration, and thus expression of emotional behaviour requires a switch from inspiration to expiration. I investigated how the midbrain periaqueductal grey (PAG), a known behavioural modulator of breathing, influences the inspiratory-to-expiratory phase transition. Contemporary models propose that late inspiratory (late-I) and post-inspiratory (post-I) neurones found in the medulla, which are active during the inspiratory-to-expiratory phase transition are involved in converting inspiration to expiration. I examined the effect of excitatory amino acid (d,l-homocysteic acid; DLH) stimulation of the PAG on the discharge function of late-I and post-I neurones. The data show a topographical organization of DLH-induced late-I and post-I neuronal modulation within the PAG. Dorsal PAG stimulation induced tachypnoea and caused excitation of both the late-I and post-I neurones. Lateral PAG induced inspiratory prolongation and caused an excitation of late-I neurones but inhibition of post-I neurones. Ventrolateral PAG induced expiratory prolongation and caused a persistent activation of post-I neurones. As well, PAG stimulation modulated both the late-I and post-I cells for least two-three breaths even prior to the change in respiratory motor pattern. This indicates that the PAG influences the late-I and post-I cells independent of pulmonary or other sensory afferent feedback. I conclude that the PAG modulates the activity of the medullary late-I and post-I neurones, and this modulation contributes to the conversion of eupnoea into a behavioural breathing pattern.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
L-Homocysteic acid, ≥95%