- Kinetics of the reversible reaction of CO2(aq) and HCO3(-) with sarcosine salt in aqueous solution.
Kinetics of the reversible reaction of CO2(aq) and HCO3(-) with sarcosine salt in aqueous solution.
Aqueous sarcosine salts are fast carbon dioxide (CO(2)) absorbents suitable for use in postcombustion CO(2) capture in coal-fired power plants. We have developed a detailed reaction scheme including all the reactions in the sarcosine-CO(2)-water system. All unknown rate and equilibrium constants were obtained by global data fitting. We investigated the temperature-dependent rate and equilibrium constants of the reaction between aqueous CO(2) and sarcosine using stopped-flow spectrophotometry, by following the pH changes over the wavelength range 400-700 nm via coupling to pH indicators. The corresponding rate and equilibrium constants ranged from 15.0 to 45.0 ยฐC and were analyzed in terms of Arrhenius, Eyring, and van't Hoff relationships. The rate constant for the reaction between CO(2) and sarcosine to form the carbamate at 25.0 ยฐC is 18.6(6) ร 10(3) M(-1) s(-1), which is very high for an acyclic amine; its activation enthalpy is 59(1) kJ mol(-1) and the entropy is 33(4) J mol(-1) K(-1). In addition, we investigated the slow reaction between bicarbonate and sarcosine using (1)H nuclear magnetic resonance spectroscopy and report the corresponding rate and equilibrium constants at 25.0 ยฐC. This rate constant is 5.9 ร 10(-3) M(-1) s(-1).