콘텐츠로 건너뛰기
Merck
  • Development and application of methods for determination of residual monomer in dental acrylic resins using high performance liquid chromatography.

Development and application of methods for determination of residual monomer in dental acrylic resins using high performance liquid chromatography.

Biomedical chromatography : BMC (2005-09-24)
V M Urban, Q B Cass, R V Oliveira, E T Giampaolo, A L Machado
초록

Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil C18 (5 microm particle size, 100 A pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 microg/mL for methyl methacrylate, 10.0-160.0 microg/mL for butyl methacrylate, 50.0-500.0 microg/mL for isobutyl methacrylate and 2.5-180.0 microg/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
1,6-Hexanediol dimethacrylate, contains 75.0-125.0 hydroquinone as inhibitor