콘텐츠로 건너뛰기
Merck

Selective catalysis with peptide dendrimers.

Journal of the American Chemical Society (2004-06-24)
Céline Douat-Casassus, Tamis Darbre, Jean-Louis Reymond
초록

Peptide dendrimers incorporating 3,5-diaminobenzoic acid 1 as a branching unit (B) were prepared by solid-phase synthesis of ((Ac-A(3))(2)B-A(2))(2)B-Cys-A(1)-NH(2) followed by disulfide bridge formation. Twenty-one homo- and heterodimeric dendrimers were obtained by permutations of aspartate, histidine, and serine at positions A(1), A(2), and A(3). Two dendrimers catalyzed the hydrolysis of 7-hydroxy-N-methyl-quinolinium esters (2-5), and two other dendrimers catalyzed the hydrolysis of 8-hydroxy-pyrene-1,3,6-trisulfonate esters (10-12). Enzyme-like kinetics was observed in aqueous buffer pH 6.0 with multiple turnover, substrate binding (K(M) = 0.1-0.5 mM), rate acceleration (k(cat)/k(uncat) > 10(3)), and chiral discrimination (E = 2.8 for 2-phenylpropionate ester 5). The role of individual amino acids in catalysis was investigated by amino acid exchanges, highlighting the key role of histidine as a catalytic residue, and the importance of electrostatic and hydrophobic interactions in modulating substrate binding. These experiments demonstrate for the first time selective catalysis in peptide dendrimers.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
3,5-Diaminobenzoic acid, 98%