์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
Merck

Enzyme-degradable self-assembled hydrogels from polyalanine-modified poly(ethylene glycol) star polymers.

Macromolecular rapid communications (2013-01-05)
Paul D Thornton, Shah M Reduwan Billah, Neil R Cameron
์ดˆ๋ก

The generation of a range of star-shaped block copolymers composed of a biocompatible poly(ethylene glycol) (PEG) core tethered to a polyalanine (PAla) shell that possesses the capability to (reversibly) self-assemble in water is described. The hydrogels formed offer a hydrophilic environment ideal for biological processes involving proteins and are able to withhold albumin for prolonged periods before its triggered release following the targeted material degradation by the proteolytic enzyme elastase. Consequently, the materials formed offer significant promise for the delivery of proteins, and possibly inhibitors, in response to a proteolytic enzyme overexpressed in chronic wounds.

MATERIALS
์ œํ’ˆ ๋ฒˆํ˜ธ
๋ธŒ๋žœ๋“œ
์ œํ’ˆ ์„ค๋ช…

Sigma-Aldrich
Poly-DL-alanine, mol wt 1,000-5,000
Sigma-Aldrich
Elastase from porcine pancreas, Type IV, Protein 50-90 %, lyophilized powder, ≥4.0 units/mg protein (biuret)
Sigma-Aldrich
Elastase from porcine pancreas, lyophilized powder, suitable for cell culture
Sigma-Aldrich
Elastase from porcine pancreas, Type III, lyophilized powder, Protein 55-85 %, ≥4.0 units/mg protein
Sigma-Aldrich
Elastase from porcine pancreas, Type I, ≥4.0 units/mg protein