콘텐츠로 건너뛰기
Merck
  • Nogo-A does not inhibit retinal axon regeneration in the lizard Gallotia galloti.

Nogo-A does not inhibit retinal axon regeneration in the lizard Gallotia galloti.

The Journal of comparative neurology (2016-09-13)
Dirk M Lang, Maria Del Mar Romero-Alemán, Bryony Dobson, Elena Santos, Maximina Monzón-Mayor
초록

The myelin-associated protein Nogo-A contributes to the failure of axon regeneration in the mammalian central nervous system (CNS). Inhibition of axon growth by Nogo-A is mediated by the Nogo-66 receptor (NgR). Nonmammalian vertebrates, however, are capable of spontaneous CNS axon regeneration, and we have shown that retinal ganglion cell (RGC) axons regenerate in the lizard Gallotia galloti. Using immunohistochemistry, we observed spatiotemporal regulation of Nogo-A and NgR in cell bodies and axons of RGCs during ontogeny. In the adult lizard, expression of Nogo-A was associated with myelinated axon tracts and upregulated in oligodendrocytes during RGC axon regeneration. NgR became upregulated in RGCs following optic nerve injury. In in vitro studies, Nogo-A-Fc failed to inhibit growth of lizard RGC axons. The inhibitor of protein kinase A (pkA) activity KT5720 blocked growth of lizard RGC axons on substrates of Nogo-A-Fc, but not laminin. On patterned substrates of Nogo-A-Fc, KT5720 caused restriction of axon growth to areas devoid of Nogo-A-Fc. Levels of cyclic adenosine monophosphate (cAMP) were elevated over sustained periods in lizard RGCs following optic nerve lesion. We conclude that Nogo-A and NgR are expressed in a mammalian-like pattern and are upregulated following optic nerve injury, but the presence of Nogo-A does not inhibit RGC axon regeneration in the lizard visual pathway. The results of outgrowth assays suggest that outgrowth-promoting substrates and activation of the cAMP/pkA signaling pathway play a key role in spontaneous lizard retinal axon regeneration in the presence of Nogo-A. Restriction of axon growth by patterned Nogo-A-Fc substrates suggests that Nogo-A may contribute to axon guidance in the lizard visual system. J. Comp. Neurol. 525:936-954, 2017. © 2016 Wiley Periodicals, Inc.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) antibody produced in mouse, clone G-A-5, ascites fluid
Sigma-Aldrich
Anti-Nerve Growth Factor Receptor Antibody, p75, serum, Chemicon®